An Evaluation of Machine Learning-Based Methods for Detection of Phishing Sites
نویسندگان
چکیده
In this paper, we evaluate the performance of machine learningbased methods for detection of phishing sites. In our previous work [1], we attempted to employ a machine learning technique to improve the detection accuracy. Our preliminary evaluation showed the AdaBoost-based detection method can achieve higher detection accuracy than the traditional detection method. Here, we evaluate the performance of 9 machine learning techniques including AdaBoost, Bagging, Support Vector Machines, Classification and Regression Trees, Logistic Regression, Random Forests, Neural Networks, Naive Bayes, and Bayesian Additive Regression Trees. We let these machine learning techniques combine heuristics, and also let machine learning-based detection methods distinguish phishing sites from others. We analyze our dataset, which is composed of 1,500 phishing sites and 1,500 legitimate sites, classify them using the machine learning-based detection methods, and measure the performance. In our evaluation, we used f1 measure, error rate, and Area Under the ROC Curve (AUC) as performance metrics along with our requirements for detection methods. The highest f1 measure is 0.8581, the lowest error rate is 14.15%, and the highest AUC is 0.9342, all of which are observed in the case of AdaBoost. We also observe that 7 out of 9 machine learning-based detection methods outperform the traditional detection method.
منابع مشابه
A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملDetecting Fake Websites Using Swarm Intelligence Mechanism in Human Learning
The internet and its various services have made users to easily communicate with each other. Internet benefits including online business and e-commerce. E-commerce has boosted online sales and online auction types. Despite their many uses and benefits, the internet and their services have various challenges, such as information theft, which challenges the use of these services. Information thef...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملA Proposal of the AdaBoost-Based Detection of Phishing Sites
In this paper, we propose an approach which improves the accuracy of detecting phishing sites by employing the AdaBoost algorithm. Although there are heuristics to detect phishing sites, existing anti-phishing tools still do not achieve high accuracy in detection. We hypothesize that the inaccuracy is caused by anti-phishing tools that can not use these heuristics appropriately. Our attempt is ...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کامل